BatteryMonitor Software Overview

Rights & Permission

This document was created by Wayne Getchell of Sagacitic Solutions, amateur radio callsign
VE3CZO. It is meant for reference use. Do not copy or publish it without permission and citation.
If asked, pemission is easily obtained for not for profit use. Send your request to Wayne at
getch@sagacitic.com. If you want to use any part or all of it for profit let’s talk.

Please read the BatteryMonitor Circuit Description document before tackling this one as hardware
blocks are talked about in this document without providing any descriptive detail.

BatteryMonitor measures, calculates and then displays six values on its 16 character two line
LCD display; source voltage, load current, load power, accumulated battery use in either Amp
hours or Watt hours, elapsed time, and percent remaining battery capacity.

BatteryMonitor’s central concept is the use of an interrupt driven timing loop to execute 10,000
measurement cycles per hour or about 2.8 cycles per second accumulating battery use
information.

During each 360ms cycle the source voltage and load current are measured. From these
measurements load power is calculated. Additionally calculations for accumulated battery use, in
Amp hours and Watt hours are performed. Next battery capacity is estimated based on a stored
battery characterization table that plots the battery’s terminal voltage against percent remaining
capacity. Lastly during each measurement cycle the clock is incremented keeping track of the
total elapsed time.

BatteryMonitor’s accuracy depends on the accuracy of the battery voltage and load current
measurements, the accuracy of the calculations that produce voltage, current and battery use
readings and the accuracy of the timing loop in achieving 10,000 measurement cycles per hour
as this is used to accumulate Amp hour and Watt hour battery use parameters.

Notes about

1. Memory Use
BatteryMonitor memory use is detailed in the BatteryMonitor Memory Map document.
All of the 20X2 EEPROM is used for battery data storage.
All 128 bytes of scratchpad memory is used as a lookup table for the battery terminal
voltage versus capacity data.
Special Function Registers (SFR) locations $3c to $4d are used to hold data to be written
to the display as well as locations used by the ‘LoadBatteryCap’ subroutine.

2. Symbol Reuse
The PICAXE 20X2 provides 55 Special Function Registers (SFR) for symbols used either
as single 8 hit registers (b0 to b54), 16 byte word registers (w0-w27) or a combination of
both. Some of these registers are reused.
Reqgisters b2, called varl; b3 called var2, and b4 called var3 are used as generic variable
registers and are leased by many subroutines. These register values are thus valid only
within the subroutine in which they are used, the register is considered reusable so is
generally NOT valid across subroutines.
Likewise word registers w10, varw10; wll, varwll; and wl2, varwl2, are leased by
subroutines, and again the register contents are generally NOT valid across subroutines.
One exception is a situation where a variable is used specifically to hand off data from
one subroutine to another. This allows the receiving subroutine to be built so that it can
handle a ‘generic’ variable input and therefore can be used by many routines. Varw10 for
example is used as an input to the Decimal and RoundIt subroutines. So the routine
calling Decimal or RoundIt must place data to be processed in varw10.
Registers b2,b3,b4,b5,b6,b7,b8,b20,b21,b22,b23 are reused by the Interrupt subroutine
to write the display.

VE3CZzO BatteryMonitor Software Description 1213

Program Flow

Start

The program starts by telling the compiler which PICAXE processor is being used, then
the internal EEPROM is programmed, and following that symbols are defined.

a.

b.

A’ #picaxe 20X2’ directive is issued to let the compiler know that this program
should be compiled for a 20X2

The 20X2 internal EEPROM is programmed with battery information For further
information on adding or changing battery look-up table information see the
BatteryMonitor users guide ‘Changing or Adding Battery Data’ section.

Power-up initialization
The Initialize program configures BatteryMonitor from a cold power up to get the unit
ready for its first measurements. Initialization performs the following tasks:

VE3CZO

C.

Set the processor to run at 4AMHz. Four megahertz minimizes processor power
consumption and is the slowest speed capable of performing all calculations
during the 360ms measuring timing loop.
Configure processor output switches to initial values setting the following outputs
high

i. shdn — keep the low drop out regulator on. This regulator supplies all

internal blocks including the processor.

ii. WpPEEPROM — write protect the EEPROM

iii. BVD - switch on the source voltage monitor

iv. backlight2 — turn on the display backlight. Initialize it to a medium

illumination level

V. GainLo — set the current to voltage converter gain to low
Pause to allow the power supply time to stabilize before initializing the 12C
display.
Configure the 12C display.
Display the start-up splash screen.
Write special characters to the display.
Configure the processor analog to digital converter inputs. This section also
provides code to accommodate a bug in the compiler version C.0.
Load configuration data from the external EEPROM.
Set the backlight level to that previously stored in EEPROM.
Check the values of Tick (loop timing) and Sf (current to voltage converter scale
factor) loaded from EEPROM. If they are outside predefined limits use default
values.
LoadBatteryCap section creates a percent remaining battery capacity vs. battery
terminal voltage lookup table using scratchpad memory. In this table the
scratchpad address is the battery voltage and the register content is the capacity
that will be displayed as a two digit number = xx%. The table is based on data
stored in EEPROM. This table uses all 128 bytes of the scratchpad memory. To
create the table first all readings for the selected battery are read from the
EEPROM and assembled in SFR locations 65-76. Next 53 is added at SFR
location 64 as the battery minimum and 179 in location 77 as the battery
maximum. Next begin populating the scratchpad using a loop with the addresses
driven by the battery voltage along with lookup function to put battery capacities
into scratchpad addresses. Now using any voltage between 53 and 179 as a 'get'
address wil return the remaining battery capacity as a percentage. Because the
20X2 only has a 128byte scratchpad, entries from 128 to 179 will appear in the
scratchpad as 0 to 51. Address 52 is equal to 0. Addressing registers greater
than 127 will overflow the address counter & but will return the correct battery
capacity.
Pause to allow time for the splash screen to be read.
Check if the unit is waking from hibernation. All data has been restored from
external EEPROM to the appropriate registers so there is little to do if the user
wishes to resume from hibernation. If the HibernationState value is 0 then the

BatteryMonitor Software Description 2113

StartNewReadings subroutine is called and program execution continues. If the
HibernationState value is 1 then the unit is returning from hibernation and the
display is written with ‘Resuming from Hibernation’. The program then pauses so
that the user can read the screen then program execution continues.

p. As the processor’'s GainLo switch was set high define the GainRange as 2 to be
consistent.

g. Putthe current to voltage converterin the correct measuring range in preparation
for starting measurements. This also insures that the first current measured in
the measuring loop for display and ILmax are valid. Put the device in the correct
measuring range by doing the following:

i. Execute the AutoGainRange subroutine

ii. Pause to allow the reading to settle before executing a second
AutoGainRange in case the current to voltage converter needs to
change two ranges. The gain range reading will settle in well under
100ms

iii. Execute the AutoGainRange a second time.

iv. Pause to allow the output of the current to voltage converter to settle if
the range changed a second time.

The initialization sequence is now complete and the measuring cycle begins.

Measuring
The Measure routine is BatteryMonitor’s core function. Some housekeeping is done
before starting the do loop that executes all BatteryMonitor measurements and
calculations. The measuring cycle timing is key to BatteryMonitor's ability to accurately
collect Amp hour or Watt hour use data. BatteryMonitor is configured to execute 10,000
measurement cycles per hour, so that each measurement cycle takes precisely 360
milliseconds. Each cycle is made up of two segments. The first is an interrupt driven
timing loop that is defined by using the Timer and Settimer commands configured so that
the loop time is defined by the value of Tick. This time accounts for approximately 91.2%
of the total cycle time. The remaining time is used by the interrupt service routine named
‘Interrupt’. That routine writes the display, resets the timing counters and rearms the
interrupt before returning control back to the measuring do loop. The amount of time
spent in the interrupt service routine is well defined as there are no conditional
statements in the section.
This measuring section briefly describes all measurement activities. The next section
describes each measurement and calculation subroutine in more detail.

a. Define the Timer and preload Settimer with the value Tick so that an interrupt will
occur every 360ms. As noted earlier the 360ms period is made up of the timing
loop plus the time servicing the interrupt routine.

b. Arm theinterrupts using the SetlnitFlags command

Clear the display
Loop executing the following activities. At the same time check for any activity on
switches Swl and Sw2.
i. Execute the SourceVoltage subroutine to measure as save the source
voltage,

. Execute the LoadCurrent subroutine to measure and save the load
current.

iii. Execute the GainAutoRange subroutine. This routine measures the
raw A-D reading from the output of the current to voltage converter
amplifier block to assess whether the measurement range needs to
change. The range will be changed if the measurement is outside
range limits. Each instance of the AutoGainRange subroutine can
increment or decrement the gain range through one of the unit’s three
ranges. This command is executed twice in each measurement loop in
case the range needs to be changed twice. This command is located in
time, at about half way through a measurement cycle so it affords
maximum settling time before the next GainAutoRange subroutine is

oo

VE3CZzO BatteryMonitor Software Description 3/13

executed. The second GainAutoRange subroutine is placed at the end
of the measurement cycle before the wait statement that is used to
trigger the Settimer interrupt.

iv. Check for a new source minimum voltage measurement. If a new
minimum was measured store it.

V. Check for a new load current maximum. If new maximum was just
measured store it.

Vi. Calculate and save load power.
Vii. Update and store the elapsed time.
Viii. Estimate the remaining battery capacity using the BattCapLeft

subroutine and save the result

iX. Execute the AmpWattHours subroutine to calculate both the
accumulated Amp hours and Watt hours. Format both readings and
save the active unit for display.

X. Increment the clock counter.

Xi. Execute a second GainAutoRange this measurement cycle. Check the
current to voltage converter range a second time in this loop in case
the measurement range needs to change twice. Change the range if
the current measurement is outside the range limits. This command is
located in time at about half way through a measurement cycle so it
affords maximum settling time before the next load current

measurement.

Xil. Pause longer than the interrupt interval to make sure an interrupt
occurs during the pause command. This completes one measurement
cycle.

Xiil. When the interrupt occurs, execute the Interrupt subroutine. The

Interrupt subroutine activities:
1. Write data to the display
2. Set Timer and Settimer values for the next loop
3. Re-enable the interrupt flags
4. Return to the measurement loop at the next command (top of the
loop).
e. If either Swl or Sw2 is pushed break out of the measuring loop and do the
following:

i. Disable the loop timer and timer interrupt.

ii. If Swl is pushed check for a Hibernation request by determining if the
switch is being held closed. If the switch is held closed for more than
about two seconds go to the GoHibernate subroutine otherwise the
switch was pressed only momentarily so proceed to the Utilities menu.

iil. If Sw2 is pushed check to determine if it was pushed and held for more
than about two seconds. If it was only pushed momentarily then return
to the measuring loop. If it was held for more than about two seconds
then power the unit off. While in the process of powering off, check to
determine if the HibernateState flag is true. If true then execute the
GoHibernate routine to update and save Amp hour, Watt hour, and
time readings before executing the PowerOff subroutine.

Main Measurement Cycle Subroutines
SourceVoltage
This routine reads the source voltage from the 6:1 switched input voltage divider. It
rounds the result to one decimal place, and then invokes the Decimal subroutine to
format the reading for the display. The routine then saves the result in the Special
Function Register (SFR) for use during the Interrupt routine when the display is written
with stored SFR data.

VE3CZzO BatteryMonitor Software Description 4/13

LoadCurrent
This routine reads the current to voltage converter output then scales the raw reading by
the scale factor Sf. The scaled reading is then manipulated for display depending on the
GainRange and value as either xxxmA, X.XXA or xx.XA. The LoadCurrent routine
executes the following functions:
1.Read the A-D converter output of the current to voltage converter and store
the reading as ILraw.
2.Scale the reading. Multiply ILraw * Sf. Sf, the scaling factor, is determined by
calibration. It accounts for any errors in the value of the sense resistors,
the absolute value of the voltage reference, and any error in the current to
voltage converter based on the gain in GainRange0 (the highest gain). The
scaling routine takes any ILraw between 0 and 999 and multiplies it by any
scale factor between 0 and 1.999. Valid scale factors are limited to the
0.900 to 1.100 range (accommodating a +/- 10% total error).
3.Determine IL from ILraw and the GainRange. In GainRange0 the current IL is
1*ILraw or 1mA per bit. In GainRangel its 10*ILraw or 10mA per bit. And
in GainRange2 its 40*ILraw or 40mA per bit.
4.1L is then saved in varw10 and rounded using the RoundIt subroutine. The
result then sent to the Decimal routine where it's turned into ASCII
characters for direct use with the display.
5.The display is formatted depending on the value of IL. If IL<1000 then
display xxxm(A). If IL is greater than 1000 but less than 10,000 then
display x.xx(A). And lastly if IL is greater than or equal to 10,000 then
display xx.x(A).

GainAutoRange

This routine selects one of three gain ranges for the current sense to voltage converter
amplifier to insure load current is accurately measured.

GainRangeO0 is invoked when PICAXE outputs GainLo=0 and GainMed=0. This is a high
gain range having a gain of 1600 and produces a 1mA/bit output that is used with the O-
999mA range. GainRangel is invoked when GainLo=0 and GainMed=1. This medium
gain range has a gain of 160 producing an output of 10mA/bit and is used for the 1.00 to
9.99A range. GainRange? is invoked when GainLo=1 and GainMed=0. This low gain
range has a gain of 40 producing an output of 40mA per bit and is used for the 10.0 to
40.0A range.

The routine reads the output of the current to voltage converter block as ILraw, a
straightforward A to D count. From this value and the value of the current GainRange the
routine determines whether to keep the gain the same, or invoke the next higher or lower
gain. Each pass through this routine can either increment or decrement one gain range,
or keep itthe same. As there are three gain ranges this routine is invoked twice so that
any gain range may be used each measurement cycle. Two gain range changes per
measurement cycle enable measurements that change from minimum (OmA) to
maximum (40A). In addition the routine changes the GainRange variable as appropriate.

LoadPower

This routine multiplies load current, IL, by the source voltage Vsource to get load power.
Load current values range from 0 to 40,920 (40.9A) and depending on the scaling factor
could be as much as ten percent higher or 45,012 (45.0A). The source voltage is stored
as a three digit number and can range from 53 (5.3V) to 246 (24.6V). To prevent the V*|
product from overflowing the processor’s 65,535 limit while retaining as much resolution
and accuracy as possible, IL is divided into five ranges and each range assumes that the
battery voltage can be as high as its 246 maximum.

In the first range IL is less than 267. The maximum power in this range is then 266*246 or
65,436 which is displayed as 6.54 watts. The product is rounded by the RoundIt
subroutine. The value is converted to characters that can be directly displayed by the
Decimal routine and saved to SFR in the format x.xx watts for use in the display write
section of the Interrupt subroutine.

VE3CZzO BatteryMonitor Software Description 5/13

For the next range IL is greater than or equal to 267 and less than 1331. In this range IL
is divided by 5 then multiplied with the source voltage. So maximum power in this range
is 1330 divided by five times 246 or 65436. To get the value in watts the product is
divided again by two to yield a maximum of 32,718 or 32.718 watts. The result is
rounded by the Roundlt subroutine then converted to a format that can be directly
displayed by the Decimal subroutine. The value saved in SFR depends on the value of
Varwl1O0. If it's under 10,000 that is under ten watts then it's saved as x.xx watts so the
display shows 10mW resolution up to ten watts. Otherwise it's saved as xx.x watts
displaying 100mW resolution for values up to 32.7 watts.

The next range includes values of IL from 1331 to 26,600 and it is split into two sub-
ranges. If IL is less than 5321 then power is calculated by first dividing IL by 20, then
multiplying it by the source voltage and then dividing the product by five. In this range the
maximum power is 5320/20*246/5 or 13,087 which equals 131 watts when rounded. If IL
is between 5321 and 26600 then IL is divided by 100 then multiplied by the source
voltage. In this case the maximum is 26600/100*246 or 65,346 which equals 635 watts
when rounded. As before the product is rounded by the Roundlt subroutine then
formatted for the display by the Decimal subroutine. The display is formatted depending
on the value of warw10. If it's under 10,000 then the display format is xx.x W atts,
otherwise its xxx Watts with the leading zero blanked. Again the results are saved in the
SFR for use with the display write section of the Interrupt subroutine.

In the final range IL is greater than 26600. Here IL is divided by 200 multiplied by the
source voltage then divided by 5. In this range the maximum power is 45021/200*246/5
or 11,070 or 1,107 Watts. As before the product is rounded by the RoundIt subroutine
then converted for display by the Decimal subroutine. The product is then stored in SFR
in two formats. If varw10 is less than 10,000 then the number is stored as xxx watts with
the leading zero blanked. If varw10 is equal to or over 10,000 then the number is stored
as xxxx Watts.

ElapsedTime

This routine calculates then displays the elapsed time in a HH:mm format that can display
up to 99 hours and 59 seconds. The elapsed time clock runs only while the unit is
measuring. Elapsed time is saved if the unit is placed into hibernation. It can be zeroed
using the menu item “Clear Readings’ or on returning from hibernation if the user
chooses not to resume from hibernation.

Accumulating elapsed time is based on the fact that BatteryMonitor will perform 10,000
measurements per hour, and the clock in incremented once each measuring cycle. If the
Clock register is greater than 10,000 then the hours register is incremented and the clock
counter is decremented by 10,000. If hours is greater than 99 then the hours register is
setto 0. The clock register is multiplied by 6 then divided by 1000 to produce minutes.
The total time is calculated by multiplying hours by 100 and adding minutes to produce a
result in the form xxxx where the thousand and hundred represent hours while the tens
and units represent minutes. The result is then sent to the Decimal routine for conversion
to ASCII format that can be directly displayed. The result from Decimal is then saved in
SFR for use by the display writing section in the Interrupt routine.

BattCapLeft

This routine displays an estimate of the remaining battery capacity in the format xx%. The
value is based on the measured source voltage and a lookup table stored in the
scratchpad memory that associates the terminal voltage value with remaining battery
capacity. The scratchpad memory is populated with numbers representing remaining
battery capacity in a 0,2,5 10,20,30,40,50,60,70,80,90,99% sequence. The percentages
are based on data the user can derive from batteries. Battery table data is stored in the
20X2 EEPROM and then translated to percent capacity populating the scratchpad
memory using the LoadBattCap subroutine that is invoked at initialization. Note that 99%
is used rather than 100% because of display space limitations. Only 128 bytes of
scratchpad memory are available, so this limits the voltage range. Values between 52
and 179 representing 5.2 volts to 17.9 volts are stored. Values above 128 (12.8V) wrap

VE3CZzO BatteryMonitor Software Description 6/13

around the scratchpad so that 129 is 0 and 179 is 52. This routine reads a scratchpad
location using the Vsource value. The contents of that location are a two digit percentage
number. The routine limits the Vsource numbers to between 52 and 179. Numbers below
52 are treated as 00% and those above 179 are 99%. The capacity value is then sent to
the Decimal subroutine to be translated to ASCII data that can be used directly by the
display. This data is then stored in SFR for use by the display writing section in the
Interrupt routine.

AmpWattHours
This routine calculates accumulated battery use in both Amp hours and Watt hours then
displays the result in either Amp hours or Watt hours depending on user preference as
stored in the AhWh variable (set by using the BM utilities menu). Note that while only one
value is displayed, both Amp hours and Watt hours are both continuously calculated.
During each measuring cycle battery use accumulation in Amp hours is calculated first
followed by Watt hours and then the value is written to the SFR for display during the
Interrupt subroutine. In order to optimize accuracy and resolution both Amp hour and
Watt hour calculations are broken down into ranges.
1. Amp Hour Calculation
Amp hours are calculated first. Remember that the reading interval is 10”-4 hrs.
The unit accumulation is in milliamps so each cycle accumulates IL*time. The
smallest accumulation is 1ma in 104 hrs or 10”7 Amp hours. This unit is called
nAh. So every 10,000nAh is equal to 1ImAh and 1000 mA hours equals 1Ah.
Variables nAh, mAh and Ah store the accumulated battery use. All values are
zeroed on initialization unless resuming from hibernation. The code
accumulates nAh by adding the load current in mA to the value of previously
accumulated nAh. If nA hours is over 10,000 then the most significant digit is
parsed and stored as varl, as at very large currents up to 45,012 nAh could
accumulate each measuring cycle. If nAh was over 10,000 the mA hour register
is updated adding varl to the accumulated total and the nAh register
decremented appropriately. If the mAh register is 1000 or more the Ah register is
incremented and the mAh register is decremented by 1000. If the Ah register is
greater than 9,999 then its reset to zero.

2. Watt Hour Calculation
Watt hours are a bit more complicated to mange because the load current must
first be multiplied with the source voltage and then watt hours accumulated each
measuring cycle. There are 10,000 measurements per hour so each
measurement occurs in 10”4 hours. The source voltage, Vsource, can range
from 53 (5.3V) to 246 (24.6V). IL can range from 0 to 45,012 mA. The base watt
hour unit is then 1mA times 0.1V times 10™4hrs or 10"-8 Watt hours.
Throughout this calculation the unit uwh refers to 1*10"-8 Watt hours. mWh
unfortunately is not 10”-3 for convenience during this calculation it's 10"-4 or
0.1ImWhr. So it takes 10,000 mWhs to make 1Wh. As with the load current in
order to optimize accuracy the Watt hour calculation is performed in five load
current ranges arranged so that IL*Vsource+accumulated uWh is never more
than 65,535. The additional value of accumulated uWh means the limits for Watt
hour calculation are a bit different than those used for the Watts calculation.
The first range covers the values of IL up to 225. The maximum product is
IL*Vsource+uWh or 225*246+9999 or 65,349. Digit four is parsed to variable
one as large values for either IL or Vsource will cause results that are over
10,000. Varl now contains the number of mWh, so that is added to the mWh
count and the value of varl multiplied by 10,000 is subtracted from the uwWh
value.
In the second range IL is between 226 and 1290. To handle these values the
uwWh value is first de-normalized to the value for this range by dividing by five.
uWh are then calculated by dividing IL by 5 multiplying by Vsource and adding
the existing value of uWh (now actually uwWh/5). The maximum possible value in

VE3CZzO BatteryMonitor Software Description 7113

VE3CZO

this range is then IL/5*Vsource+uWh/5 or 1,290/5*246+(9,999/5) or 65,467. The
number of additional mWh is calculated by taking the uwh value and dividing it
by 2,000 (not 10,000 as the number has already been de-normalized by dividing
by 5). The result is then added to the existing value for mMWh. The remaining
uWh are calculated by taking the uwh value and finding the remainder
(uWh//2000) then multiplying the result by 5 to normalize the value for the next
measuring cycle.

Range three covers IL values between 1292 and 5286. In this range the load
current is divided by 20. So the maximum value is 5,286/20*246+(9,999/20) or
65,516. As with the last range IL is divided by 20 then multiplied by Vsource then
the de-normalized value of uWh is added to produce the total. The number of
additional mWh is calculated by taking the uwWh value and dividing it by 500 then
adding the result to the existing value for mWh. The remaining uWh value is
calculated by taking the uwh number and finding the remainder in this case
uWh//500. The result is then multiplied by 20 to normalize the value for the next
measuring cycle.

Range four covers IL values between 5287 and 26,599. In this range the load
current is divided by 100. So the maximum value is 26,599/100*246+(9,999/100)
or 65,289. As with the last range IL is divided by 100 then multiplied by Vsource
then the de-normalized value of uwh is added to produce the total. The number
of additional mWh is calculated by taking the uwWh value and dividing it by 100
then adding the result to the existing value for mMWh. The remaining uwWh value
is calculated by taking the uwh number and finding the remainder in this case
uWh//100. The result is then multiplied by 100 to normalize the value for the next
measuring cycle.

Range five covers IL values above 26599. In this range the load current is
divided by 200. So the maximum value is 45,012/200*246+(9,999/200) or
55,399. As with the last range IL is divided by 200 then multiplied by Vsource
then the de-normalized value of uwWh is added to produce the total. The number
of additional mWh is calculated by taking the uwh value and dividing it by 50
then adding the result to the existing value for mMWh. The remaining uwh value
is calculated by taking the uwh number and finding the remainder in this case
uwWh//50. The result is then multiplied by 200 to normalize the value for the next
measuring cycle.

During each measuring cycle the resulting value of the mWh register is checked
to determine if it's over 10,000. If it is the Wh register is incremented and the
mWh register is decremented by 10,000. If the Wh register is greater than 9,999
then its reset to zero.

AhWh Display Formatting

The display will show either Amp hours or Watt hours depending on the state of

the AhWh variable that can be set using the BatteryMonitor utilities. If AhWh is

zero then Amp hours are displayed if AhWh is 1 then Watt hours is displayed.

a. Displaying Amp hours

Check if Ah register is zero, if so display mAh. Set varw10 to equal the
mADh register then call the Decimal subroutine to convert the numbers to
ASCII data that can be displayed directly. This data is then stored in SFR
in the format xxxmA(h) for use by the display writing section in the
Interrupt routine. In all cases the hours, h is part of the display write
portion of the Interrupt subroutine so isn’t included. If the Ah register is
less than 100mAh then the mA register is parsed to determine the
hundreds and tens of mAh value. The hundreds value is stored in varl
then multiplied by 10. The tens value is stored in var2. Next the Ah
register is multiplied by 100 and varl and var2 are added get a result
that includes tenths and hundredths of an Ah. The value is stored in
varw10. The result is processed though the Decimal subroutine to
convert the result to ASCII data that can be directly displayed. The data

BatteryMonitor Software Description 8/13

is then stored in SFR for use by the display writing section of the
interrupt routine in one of two formats. If warw10 is less than 10,000
then the display format is x.xxA(h) and if over 10,000 the display format
is xx.xA(h). If the Ah register is greater than 100 then the Ah number
saved in warw10, and the Decimal subroutine is called to convert the
data to ASCII format that can be used directly by the display. If varw10
is less than 1,000 then the data is written to the SFR to be read by the
display portion of the Interrupt routine in the format xxxA(h) with the
leading zero blanked. If varw10 is over 10,000 then the result is stored
as XxXxxA

b. Displaying Watt hours
If the Wh register is zero then contents of the mWh register is used to
display the battery use in the form xxxmW (in all cases the hours, h is
part of the display write portion of the Interrupt subroutine so isn't
included). VarwlO0 is loaded with the contents of the mW register, the
Decimal subroutine is called to format the contents for display and the
data is saved in SFR memory for use in the display write portion of the
Interrupt subroutine. If the Wh register isn’t zero then the display is
formatted depending on its value. If it's under 100 then a value for Wh
that includes hundredths and or tenths of a Watt hour is calculated and
the display format is either x.xxW(h) or xx.xW(h). To do this the mW
register is parsed for the value of the thousands digit which is then
multiplied by 10 and saved in varl. The value of the hundreds digit is
saved in var2. The value of the Wh register is multiplied by 100 and varl
and var2 added to the product to yield a result that includes tenths and
hundredths of a watt hour. The result is sent to the Decimal subroutine
for conversion to ASCII format that can be directly displayed. If the result
is less than 10,000 then the display is stored in SFR as x.xxW(h). If the
result is greater than 10,000 then the result is saved in SFR in the format
xx.XW (h) This SFR data will be used by the display write portion of the
Interrupt subroutine. If the Wh register is over 100 then the warw10 is
set equal to the value of the Wh register and the value is sent to the
Decimal routine for conversion to ASCII format that can be used directly
by the display. If the Wh value is less than 1000 then SFR is written to
produce the format xxxW with the leading zero suppressed. If it's over
1000 the SFR is written to produce the format xxxxW.

Interrupt

The interrupt routine is invoked each time the timer function overflows and sets the timer
interrupt flag. Settimer command controls the duration and its value is preloaded so that
each measuring cycle lasts 360ms. When an interrupt occurs program execution vectors
to this routine, the routine is then executed and control returns back to the main program
resuming at the next instruction. By design the interrupt will occur each measuring cycle
at the bottom of the cycle during the last wait command. The Interrupt routine begins by
taking data that was stored by each subroutine in the last measuring cycle and placing
that data into system variable registers. The contents of the system variable registers are
then written to the display. Values for the timer and settimer registers are written
followed by the SetlnitFlags registers which re-enable the interrupt. The program then
returns to the measurement loop at the next command at the top of the loop.

LoadBatteryCap

The LoadBatteryCap subroutine creates a percent remaining battery capacity vs. battery
terminal voltage lookup table using scratchpad memory. In this table the scratchpad
address is the battery voltage (source voltage) and the register content is the capacity
that will be displayed as a two digit number xx%. Valid battery voltages range from 52
(5.2V) to 179 (17.9V). The table is based on data stored for any one of eight batteries in
EEPROM. This lookup table uses all 128 bytes of the scratchpad memory. Scratchpad

VE3CZzO BatteryMonitor Software Description 9/13

address 52 is equal to 0. Because the 20X2 only has a 128byte memory entries from
128 to 179 will appear in the scratchpad as 0 to 51. Addressing registers greater than
127 will overflow the address counter & but it will return the correct battery capacity. To
create the table data for the selected battery is read from the EEPROM and assembled in
SFR locations 65-76. Next 53 is added at SFR location 64 as the battery minimum and
179 in location 77 as the battery maximum. Then the process then begins populating the
scratchpad using a for next loop to and a lookup function that puts battery capacities into
scratchpad registers. Scratchpad addresses are based on the data assembled in SFR
addresses 64 to 77 and register content by the value of the lookup function. Now using
any voltage between 53 and 179 as a 'get' address will return the remaining battery
capacity as a percentage.

Utilities Menu Items

BatteryMonitor has eight utility menu items that are presented to the user in a continuous loop.
Line one of the display is used a header to let the user know that they are in the utilities menu
and line two presents the user with one of eight menu options in the order listed below. When in
the utilities menu, pressing Sw1l scrolls through the menu items from items a to h then repeats by
cycling back to a. Pressing Sw2 selects the menu item, the appropriate subroutine is executed
the program exits the utilities menu and returns to the measurement system.

a. MinAndPeak
b. ClearReadings
c. ChooseAhWh
d. SetBacklight
e. SelectBattery
f. GoHibernate
g. PwrOff
h. Calibration
MinAndPeak

The measuring system continuously records the minimum source voltage and peak
load current. This routine allows the user to view this data and optionally clear the
readings. The routine begins by clearing the display then writes the first line with Clr
Vmin & Ipk? It then recalls the VsourceMin and ILmax register values and converts
them to ASCII for display using the Decimal subroutine. The ILmax value is then
evaluated to determine which of three display formats to use. If ILmax is greater than
10,000 then, xx.xAp is displayed, if ILmax is less than 1000 then xxxmAp is
displayed, otherwise x.xxAp is displayed. The minimum battery voltage and peak
current are then written to the display. A leading left arrow and ‘N’ is also written to
line 1 and a leading left arrow and ‘Y’ is written to the display’s second line. The’
WaitForSwitch’ subroutine is then called and the unit waits for the user to press either
Swl or Sw2. If Swl is pressed the minimum voltage and peak current registers are
reset. If Sw2 is pressed the minimum voltage and peak current registers are left
unaltered. The subroutine then ends and program execution returns to the
measuring subsystem.

ClearReadings
This display is cleared then written with options to Restart measurements (Swl) or
return to the measurement system (Sw2) without clearing readings. The
WaitForSwitch subroutine is then called to do just that, wait for a user to press one of
the two switches. If Swl is pressed then the process of clearing data begins. If the
HibernateState variable is 1 it is set to 0 and the new value stored in EEPROM.
Otherwise if the HibernateState was 0 the EEPROM write is bypassed. The
RestartReadings subroutine is then called to clear the clock, Ah and Wh registers.
The program then returns to the measuring subsystem. If Sw2 is pressed then the
program pauses to let the user get their finger off the button and the program returns
to the measuring system.

VE3CZzO BatteryMonitor Software Description 10/13

ChooseAhWh

This routine sets the AhWh variable and saves it in external EEPROM.

This display is cleared then written with options to set the display format to Ah, Amp
hours located by (Sw1l), or Wh, Watt hours located by (Sw2). The ‘WaitForSwitch’
subroutine is then called and the unit waits for the user to press either Swl or Sw2.

If Sw1 is pushed to select Amp hours the AhWh variable is set to 0. If Sw2 is pushed

selecting Watt hours the AhWh variable is setto 1. The value is then written to
external EEPROM.

SetBacklight

Set Backlight selects one of four display backlight levels, off, low, medium, high. This
value is saved to external EEPROM.

Line one of the display is written with the down arrow then ‘Next BL Level’ and line 2
with a left arrow then Backlight followed by the level as contained in the backlight
register. Next the SetBacklightLevel subroutine is called to set the backlight level.
The WaitForSwitch subroutine is then called. If Swl is pressed the Backlight value is
incremented and the new value of backlight is displayed and backlight drives set
accordingly. If Sw2 is pushed the present value of Backlight is saved to external
EEPROM then the program returns to the measuring system.

SelectBattery

The 20X2 EEPROM can store up to eight different battery characteristic data sets.
This data provides battery terminal voltage versus percent remaining capacity
information. This routine enables the user to select one of the batteries. It then saves
the selected battery number (0-7) in the Battery register as well as external
EEPROM. The routine then calls the LoadBatteryCap subroutine to populate the
scratchpad memory with a battery terminal voltage versus percent capacity look-up
table. At the start of this subroutine line one of the display is written with the down
arrow and Next battery. The Battery pointer is then determined from the Battery
register content and is used to write the second line which consists of a left arrow
symbol followed by the battery description section as stored in the EEPROM. The
Waif for switch subroutine is called. If Sw1 is pushed then the next battery is to be
selected. To do this the Battery register is incremented. If Battery is greater than 7
then its set to zero as there are only seven batteries available. Next the value of the
BatteryPointer determined and the first two characters from the battery description
read. If they are both $ff then the Battery register value is zeroed as the $ff is used
as a flag to indicate the last battery data set. Program execution is then vectored to
the start of SelectBattery so that the next battery info can be displayed. If Sw2 is
pushed then the current battery is selected. The value of Battery is saved in external
EEPROM after which the LoadBatteryCap subroutine is executed to load the new

battery look-up table values into the scratchpad memory. The program then returns
to the measuring system.

GoHibernate

PwrOff

VE3CZO

This routine sets the HibernateState register to one. It then saves the following
registers to external EEPROM: HibernateState, Hours, Time, nAh, mAh, Ah, uWh

mwWh and Wh. The routine then calls the PwrOff subroutine which will turn the unit
off.

This routine turns the unit off. If HibernateState is one then line one of the display is
written with Hibernating, otherwise Bye and the second display line is written with
Bye. A two second pause is started to allow the user to stop pressing the push
button. The shutdown pin shdn is then set low and a four second pause executed to
ensure the unit is powered down completely. As a failsafe in case for some reason
the unit isn’t powered down (a fault or the user may have kept their finger on the
pushbutton, the shutdown pin is commanded high so that Sw1 remains operative.

BatteryMonitor Software Description 11/13

Calibration
At start this subroutine provides the user with two choices written to the display, Sf
Set or Time-Tick Cal. The scale factor, Sf, modifies load current measurements
correcting for errors in reference voltage, shunt resistor value and current to voltage
converter gain based on the gain of GainRange0. Note that this routine does not
calculate the scale factor; it only enables the user to enter and save a calculated
scale factor. The Time-Tick cal routine adjusts the measuring cycle to more precisely
set it to 10,000 measurements per hour. This makes the battery use (Amp hours or
Watt hours) measurements more precise. For information how to use the
ScaleFactorSet or Time-Tick routines refer to the user manual.
After the initial display the subroutine calls the WaitForSwitch subroutine. If Swl is
pressed the program executes the ScaleFactorSet routine otherwise it begins the
Time-Tick cal section.

Time-Tick Cal

This section begins by getting the user to enter the elapsed time from the stop watch
in hours, minutes, and seconds. The program limits the maximum stop watch time
entered to 8:59:59. Once seconds are entered the routine will then display the time
and ask if it's correct using Sw1 for 'Y’ and Sw2 for ‘N’. If Sw2 is pushed then the
program goes back to the GetHours routine. If Swl is pushed the routine begins to
calculate a new value for Tick. To do this both the internal time and the stopwatch
time are converted to seconds. The stopwatch time is then subtracted from the
internal time. If the difference is greater than 32,768 the number is negative so the
internal time is subtracted from the stopwatch time and a flag is set to indicate the
negative value. Each tick shifts the internal clock by 0.64 seconds per hour so the
next task calculates the number of whole ticks to change. This is done by calculating
the difference between the two clocks in seconds per hour then multiplying by 1.563
(1/0.64). To do this while optimizing error correcting range and accuracy, the
difference in seconds between the two clocks is multiplied by 15.63. The result is
then divided by stopwatch time in seconds divided by 36 (to get decimal hours *10).
This will correct for clock errors in excess of 10% without overflow. Note PICAXE
devices with internal clocks are trimmed to 1% so errors as large as 10% should not
occur. The result in number of ticks is then added or subtracted from the current Tick
register value depending the value of var3, the negative flag. Line one of the display
is then written with 'Y Save New Tick?’ and both the old and new values of Tick are
displayed on line two preceded by an ‘N’. If Swl is pressed then the new tick value
is saved in EEPROM and the program returns to the measuring routine. If Sw2 is
pressed the old value of Tick is kept and the program returns to the measuring
routine.

ScaleFactorSet

The temporary register Varw10 is loaded with the current value of Sf. It's then
converted to ASCII using the Decimal subroutine then displayed with a leading down
arrow on line two along with a leading up arrow and Chg SF? on line 1. The
WaitForSwitch subroutine is then called. If Swl was pressed then the scale factor is
incremented, if Sw2 was pressed the scale factor is decremented. If both switches
are pressed then the scale factor value is saved to external EEPROM and the
program returns to the measuring routine.

Other Subroutines

WaitForSwitch

This routine is designed to wait for a pushbutton switch closure. Swl and Sw2 are
normally open push button switches. This routine contains a timeout timer that is
used to exit the utilities menu if neither of the two pushbutton switches is pushed

VE3CZzO BatteryMonitor Software Description 12/13

within about 20 seconds. The battery use (Ah,Wh), and session time doesn’t change
when the utilities menu is invoked. So the WatiForSwitchTimeout is intend to limit
time spent in the utilities menu if Swl is mistakenly pushed or if the user is distracted
while the device is in the utilities menu. The WaitForSwitchTimeout registry is
cleared. The routine then loops while Swl and Sw2 is zero (open) and
WaitForSwitchTimout is under 200. A 100ms wait (2X50ms) is used both as part of
the timeout period as well as a switch debounce. The WaitForSwitchTimeout register
is incremented and the loop repeats.

StartNewReadings

This routine clears the following registers; clock, Hours, nAh, mAh, Ah, uWh, mWh,
Wh, VsourceMin, and ILmax.

SetBacklightLevel

Roundlt

Decimal

EEPROM

This subroutine sets the display backlight to one of four levels by controlling the
Backlight 1 and Backlight 2 pins (C.5 and C.7). The display backlight level is defined
by the Backlight register to be one of four levels, off(0), low(1), medium(2), or high(3).

Roundlt is used to round up measurement results or calculations. The routine is
used primarily to prepare data for display. The routine assumes three digits will be
displayed in the form xxx, xx.x or x.xx. A number to be rounded is provided to this
routine using the generic variable varw10 and the rounded up number is returned
using varwl10.

If varw10 is under 1000, then all three digits will be displayed so there is really
nothing to round. In this case the rounding routine is bypassed. If the result is over
1000 but less than 10000 then the least significant digit, digit 0, is parsed and if its
value is over 4 the number is rounded up by increasing varw10 by 10. If the result is
over 10,000 then the second digit in the number, digit 1, is parsed and if its value is
over 4 then the number is rounded up by increasing varw10 by 100.

Decimal takes a value stored in varw10 and parses the unit, ten, hundred, thousand,
and tenthousand values turning them into ASCII characters that can be used directly
with the LCD display.

Battery Data Storage

VE3CZO

Data for up to eight different batteries is stored in the PICAXE 20X2 EEPROM. A
comment line is used to indicate the battery number, zero through seven. This is
followed by two lines of data. The first line contains fifteen characters between the
guotes that describe the battery. This information is used by the ‘SelectBattery’ utility
menu to describe the battery to the user. The second line contains twelve voltage
entries representing 2,5,10.20,30,40,50,60,70,80,90, and 99% battery capacity. Each
entry is three digits representing the battery terminal voltage so xxx represents xx.xV
at the respective battery capacity. If the terminal voltage is under 10.0 volts the
leading zero must be populated. For example 5.6 volts would appear as 056. The
data starts with 2% battery capacity and ends with 99% battery.

The following lines show a battery data entry.

'‘BatteryO

EEPROM $00,("6 Cell LeadAcid")

EEPROM $10,(105,109,111,113,115,118,119,121,122,123,125,126)

If all eight battery entries aren’t used then the first two bytes of the first unused entry
must contain $ff to act as an end of data marker as shown in the following example
'‘Battery6

EEPROM $c0,($ff,$ff) 'marker so menu cycles back to first entry

EEPROM $d0,(0)

BatteryMonitor Software Description 13/13

